Calcul de la Capacité de Godet en Terrassement
Contexte : L'optimisation des chantiers, un enjeu majeur du BTP.
En terrassement, le choix de l'engin et de son équipement est déterminant pour la productivité d'un chantier. La capacité du godet d'une pelle hydraulique n'est pas juste un volume ; c'est le point de départ de tout calcul de rendement. Une mauvaise estimation peut entraîner des retards et des surcoûts importants. Cet exercice vous guidera à travers le calcul de la capacité réelle d'un godet, en tenant compte des caractéristiques du matériau excavé, un savoir-faire essentiel pour tout conducteur d'engins ou chef de chantier.
Remarque Pédagogique : Cet exercice illustre comment les données géométriques d'un équipement (le godet) sont combinées avec des facteurs empiriques liés au matériau (coefficients de remplissage et de foisonnement) pour obtenir une performance opérationnelle. C'est une démarche fondamentale pour planifier les mouvements de terre, estimer les durées de cycles et choisir la flotte de camions adaptée.
Objectifs Pédagogiques
- Calculer la capacité nominaleAussi appelée capacité à ras, c'est le volume géométrique intérieur du godet, sans tenir compte du matériau qui pourrait déborder. Unité : m³ ou litres. (à ras) d'un godet de forme trapézoïdale.
- Déterminer la capacité en dômeCapacité maximale théorique du godet, incluant le volume de matériau accumulé au-dessus des bords (le 'dôme'), qui dépend de l'angle de talus naturel du matériau. en appliquant un talus de 2:1.
- Appliquer un coefficient de remplissageFacteur (généralement entre 0.8 et 1.1) qui ajuste la capacité en dôme à la réalité du terrain. Il dépend du type de matériau (collant, rocheux...) et de la technique de l'opérateur. pour obtenir la capacité opérationnelle.
- Utiliser le coefficient de foisonnementFacteur (supérieur à 1) qui représente l'augmentation de volume d'un matériau lorsqu'il passe de son état en place (compact) à un état remanié (en vrac dans le godet). Un mètre cube en place devient plus d'un mètre cube en vrac. pour trouver le volume de matériau en place réellement déplacé.
- Se familiariser avec les unités et les ordres de grandeur du terrassement (\(\text{m}^3\), \(\text{L}\), coefficients).
Données de l'étude
Schéma et Dimensions du Godet
Paramètre | Symbole | Valeur | Unité |
---|---|---|---|
Largeur intérieure du godet | \(L\) | 1000 | \(\text{mm}\) |
Largeur de l'ouverture | \(b\) | 900 | \(\text{mm}\) |
Profondeur du godet | \(p\) | 1200 | \(\text{mm}\) |
Rayon de la pointe des dents | \(r\) | 1100 | \(\text{mm}\) |
Coefficient de remplissage (argile) | \(k_{\text{r}}\) | 0.90 | (sans dimension) |
Coefficient de foisonnement (argile) | \(k_{\text{f}}\) | 1.25 | (sans dimension) |
Questions à traiter
- Calculer la capacité nominale (à ras) du godet en litres. On assimilera la section du godet à un trapèze.
- Calculer la capacité en dôme du godet en litres, en considérant un talus de matériau de 2:1 (la hauteur du dôme est égale à la moitié de sa base).
- Déterminer la capacité opérationnelle du godet, qui est le volume de matériau foisonné réellement transporté à chaque cycle.
- Calculer le volume en place de matériau extrait à chaque cycle de godet.
Les bases du calcul de rendement
Avant de commencer les calculs, comprenons les concepts qui transforment un volume géométrique en un rendement de chantier.
1. Volume d'un Prisme Trapézoïdal :
Un godet peut être simplifié en un prisme dont la base est un trapèze. Le volume est l'aire de cette base multipliée par la largeur du godet. L'aire d'un trapèze de bases \(b_1\) et \(b_2\) et de hauteur \(h\) est \(A = \frac{(b_1 + b_2) \cdot h}{2}\). Pour notre godet, la formule du volume à ras sera :
\[ V_{\text{ras}} = \frac{(\text{petite base} + \text{grande base}) \cdot \text{profondeur}}{2} \cdot \text{Largeur} \]
2. Le Coefficient de Remplissage (\(k_{\text{r}}\)) :
C'est un facteur réaliste. Un godet n'est jamais parfaitement rempli comme un verre d'eau. Pour des matériaux collants comme l'argile, une partie reste collée, et la forme du tas n'est pas parfaite. Le volume réel chargé est donc :
\[ V_{\text{opérationnel}} = V_{\text{dôme}} \cdot k_{\text{r}} \]
3. Le Coefficient de Foisonnement (\(k_{\text{f}}\)) :
C'est le concept le plus important pour la planification. Quand on creuse un sol, on le décompacte. L'air s'insère entre les grains, et son volume augmente. Le foisonnement est le rapport entre le volume foisonné (en vrac) et le volume en place (dans le sol).
\[ V_{\text{foisonné}} = V_{\text{en place}} \cdot k_{\text{f}} \]
Pour connaître le volume de terrain que l'on a réellement extrait, il faut donc diviser le volume transporté par le godet par ce coefficient.
Correction : Calcul de la Capacité de Godet en Terrassement
Question 1 : Calculer la capacité nominale (à ras)
Principe (le concept physique)
La capacité nominale, ou "à ras", est le volume géométrique pur du godet. C'est la quantité de matériau qu'il contiendrait si on le remplissait parfaitement jusqu'aux bords et qu'on arasait la surface. On le modélise comme un prisme droit dont la base est la section latérale du godet (un trapèze).
Mini-Cours (approfondissement théorique)
La norme ISO 7451 standardise le calcul des capacités de godets. Pour la capacité à ras, elle définit précisément les plans qui délimitent le volume. Notre approche simplifiée (prisme trapézoïdal) est une excellente approximation pour les calculs courants sur le terrain.
Remarque Pédagogique (le conseil du professeur)
Pensez à ce calcul comme si vous remplissiez le godet d'eau. C'est une valeur théorique, mais elle est la base de tous les autres calculs. Sans connaître ce volume de base, impossible d'estimer la suite. C'est la "cylindrée" de notre outil de travail.
Normes (la référence réglementaire)
Les capacités de godets sont souvent exprimées selon les normes SAE (Society of Automotive Engineers) ou CECE (Committee for European Construction Equipment). Ces normes définissent les méthodes de calcul pour la capacité à ras et en dôme afin de pouvoir comparer les équipements de différents fabricants.
Formule(s) (l'outil mathématique)
La section est un trapèze. Pour le calcul, on utilise les dimensions internes. La "grande base" du trapèze est le rayon \(r\) et la "petite base" est l'ouverture \(b\). La "hauteur" du trapèze est la profondeur \(p\).
Hypothèses (le cadre du calcul)
On simplifie la forme courbe du fond du godet par une base droite (le rayon \(r\)). On considère que les parois sont verticales, ce qui fait de la section un trapèze parfait.
Donnée(s) (les chiffres d'entrée)
- Largeur du godet, \(L = 1000 \, \text{mm} = 1.0 \, \text{m}\)
- Ouverture (petite base), \(b = 900 \, \text{mm} = 0.9 \, \text{m}\)
- Rayon (grande base), \(r = 1100 \, \text{mm} = 1.1 \, \text{m}\)
- Profondeur (hauteur du trapèze), \(p = 1200 \, \text{mm} = 1.2 \, \text{m}\)
Astuces(Pour aller plus vite)
Convertissez immédiatement toutes les dimensions en mètres. Les calculs de volume en terrassement se font presque toujours en mètres cubes (\(\text{m}^3\)). Cela évite des erreurs de conversion avec des facteurs 1000, 1 000 000 ou pires ! Rappelez-vous : 1 \(\text{m}^3\) = 1000 litres.
Schéma (Avant les calculs)
Section Trapézoïdale pour le Calcul
Calcul(s) (l'application numérique)
1. Calculer le volume en mètres cubes (\(\text{m}^3\)) :
2. Convertir en litres (\(\text{L}\)) :
Schéma (Après les calculs)
Capacité Nominale Calculée
Réflexions (l'interprétation du résultat)
La capacité nominale est de 1200 litres. C'est une valeur de référence importante, souvent celle qui est "marquée" sur le godet. Cependant, un opérateur expérimenté sait qu'il ne déplace jamais exactement ce volume. C'est une base de départ, pas le rendement final.
Points de vigilance (les erreurs à éviter)
L'erreur classique est de mal identifier les bases et la hauteur du trapèze. La "hauteur" du trapèze est la profondeur du godet (\(p\)), pas sa largeur (\(L\)). La largeur \(L\) sert à transformer l'aire de la section en volume.
Points à retenir (permettre a l'apprenant de maitriser la question)
- La capacité à ras est le volume géométrique de base.
- On la calcule souvent en modélisant le godet comme un prisme à base trapézoïdale.
- La première étape est de convertir toutes les dimensions en mètres.
Le saviez-vous ? (la culture de l'ingénieur)
Il existe des dizaines de types de godets spécialisés : godets "curage" (très larges et peu profonds pour les fossés), godets "roche" (très renforcés avec des dents spécifiques), godets "trapèze" (pour creuser des tranchées avec des parois inclinées en une seule passe), ou encore des godets "orientables".
FAQ (pour lever les doutes)
Résultat Final (la conclusion chiffrée)
A vous de jouer(pour verifier la comprehension de l'etudiant parrapport a la question)
Avec un godet plus petit de 800 mm de large (\(L=0.8 \, \text{m}\)), quelle serait la capacité à ras en litres ?
Question 2 : Calculer la capacité en dôme
Principe (le concept physique)
La capacité en dôme représente le volume maximal que le godet peut contenir. Elle inclut le volume à ras (calculé précédemment) plus le volume du tas de matériau qui se forme au-dessus des bords du godet. La forme de ce tas dépend de l'angle de talus naturel du matériau (sa capacité à "tenir" en pente). On le modélise souvent par un talus de 2:1, ce qui signifie que la pente monte de 1 unité verticale pour 2 unités horizontales.
Mini-Cours (approfondissement théorique)
Le volume du dôme peut être assimilé à une pyramide ou un prisme triangulaire posé sur le dessus du godet. L'aire de la base de ce dôme est un triangle. Pour un talus de 2:1, la hauteur de ce triangle est \(h_{\text{dôme}} = b/4\), où \(b\) est la largeur de l'ouverture du godet. Le volume du dôme est alors l'aire de ce triangle multipliée par la largeur du godet \(L\).
Remarque Pédagogique (le conseil du professeur)
Imaginez remplir le godet avec du sable sec. Vous pouvez faire un tas qui dépasse. C'est ce volume supplémentaire que l'on calcule. C'est une capacité "optimiste" car elle suppose un remplissage parfait, mais elle est plus proche de la réalité que la capacité à ras.
Normes (la référence réglementaire)
La norme SAE J296 spécifie un angle de talus de 1:1 pour le calcul de la capacité en dôme, tandis que la norme CECE utilise un angle de 2:1. Il est important de savoir quelle norme est utilisée par le fabricant. Nous utilisons ici la valeur la plus courante de 2:1.
Formule(s) (l'outil mathématique)
1. Volume du dôme (prisme triangulaire) :
Avec un talus de 2:1, la base du triangle est \(b\) et sa hauteur est \(h = b/4\).
2. Capacité totale en dôme :
Hypothèses (le cadre du calcul)
On suppose que le matériau forme un dôme géométriquement parfait selon un talus de 2:1 et que le volume à ras est exact. On néglige les irrégularités de chargement.
Donnée(s) (les chiffres d'entrée)
- Volume à ras, \(V_{\text{ras}} = 1.2 \, \text{m}^3\) (du calcul Q1)
- Ouverture, \(b = 0.9 \, \text{m}\)
- Largeur, \(L = 1.0 \, \text{m}\)
Astuces(Pour aller plus vite)
Le volume du dôme est souvent un petit pourcentage (5-15%) du volume à ras. Si votre calcul donne une valeur du même ordre de grandeur que le volume à ras, vérifiez votre formule (probablement une erreur dans le calcul de la hauteur du dôme).
Schéma (Avant les calculs)
Section du Godet avec Dôme de Matériau (Talus 2:1)
Calcul(s) (l'application numérique)
1. Calculer le volume du dôme en \(\text{m}^3\) :
2. Calculer la capacité totale en dôme :
3. Convertir en litres :
Schéma (Après les calculs)
Capacité Totale en Dôme
Réflexions (l'interprétation du résultat)
La capacité en dôme (1301 L) est supérieure d'environ 8% à la capacité à ras. C'est ce volume que le commercial ou le fabricant mettra en avant. Il représente le potentiel maximal de l'équipement dans des conditions idéales de chargement d'un matériau qui forme un bon dôme.
Points de vigilance (les erreurs à éviter)
Ne pas oublier d'ajouter le volume du dôme au volume à ras. Le volume du dôme seul n'est pas la capacité de l'engin. Attention également à la formule du volume du dôme, qui dépend du talus (1:1 ou 2:1), ce qui change le calcul de sa hauteur.
Points à retenir (permettre a l'apprenant de maitriser la question)
- La capacité en dôme = Capacité à ras + Volume du dôme.
- Le volume du dôme dépend de l'angle de talus du matériau (souvent 2:1).
- C'est une capacité théorique maximale.
Le saviez-vous ? (la culture de l'ingénieur)
Les systèmes de guidage GPS 3D modernes installés sur les pelles hydrauliques permettent à l'opérateur de voir en temps réel sur un écran en cabine le profil exact du terrain à creuser. Cela permet d'optimiser chaque coup de godet pour atteindre la cote de projet précise, améliorant drastiquement le remplissage et le rendement global.
FAQ (pour lever les doutes)
Résultat Final (la conclusion chiffrée)
A vous de jouer(pour verifier la comprehension de l'etudiant parrapport a la question)
Si le talus était de 1:1 (hauteur du dôme = \(b/2\)), quelle serait la capacité en dôme totale en litres ?
Question 3 : Déterminer la capacité opérationnelle
Principe (le concept physique)
La capacité opérationnelle est le volume réel de matériau (à l'état foisonné) que l'on peut espérer déplacer à chaque cycle. Elle prend la capacité en dôme, qui est une valeur théorique maximale, et lui applique un "coefficient de réalité" : le coefficient de remplissage (\(k_{\text{r}}\)). Ce coefficient tient compte du type de matériau, de la technique de l'opérateur, et des conditions de travail.
Mini-Cours (approfondissement théorique)
Le coefficient de remplissage est empirique et tabulé dans les manuels de BTP. Il varie de 1.0 à 1.1 pour les matériaux faciles à charger (sable, gravier) à 0.8-0.9 pour les matériaux collants (argile humide) et peut descendre à 0.6 pour de la roche mal fragmentée. C'est un paramètre crucial pour passer de la fiche technique de l'engin à un calcul de rendement de chantier fiable.
Remarque Pédagogique (le conseil du professeur)
C'est ici que l'expérience du chef de chantier prend tout son sens. Choisir le bon coefficient de remplissage est un art. Un mauvais choix peut fausser complètement les prévisions de production. Pour notre exercice, nous utilisons une valeur standard pour l'argile.
Normes (la référence réglementaire)
Les manuels des fabricants d'engins (par exemple le "Performance Handbook" de Caterpillar) fournissent des tables détaillées des coefficients de remplissage pour différents matériaux et types de godets, basées sur des milliers d'heures de tests sur le terrain.
Formule(s) (l'outil mathématique)
La formule est une simple multiplication :
Hypothèses (le cadre du calcul)
On suppose que le coefficient de remplissage choisi est constant et représentatif des conditions moyennes du chantier (compétence de l'opérateur, humidité du sol, etc.).
Donnée(s) (les chiffres d'entrée)
- Capacité en dôme, \(V_{\text{totale dôme}} = 1.301 \, \text{m}^3\) (du calcul Q2)
- Coefficient de remplissage, \(k_{\text{r}} = 0.90\)
Astuces(Pour aller plus vite)
Pour une estimation rapide, on peut retenir qu'un matériau collant fait perdre environ 10-15% de la capacité en dôme, tandis qu'un matériau facile à charger (sable sec) peut en faire gagner 5-10%.
Schéma (Avant les calculs)
Application du Coefficient de Remplissage
Calcul(s) (l'application numérique)
1. Calculer la capacité opérationnelle en \(\text{m}^3\) :
2. Convertir en litres :
Schéma (Après les calculs)
Capacité Opérationnelle Réelle
Réflexions (l'interprétation du résultat)
La capacité opérationnelle (1171 L) est inférieure à la capacité à ras (1200 L). Cela peut sembler contre-intuitif, mais c'est logique : l'effet négatif du mauvais remplissage (matériau collant) est plus important que l'effet positif du dôme. C'est ce volume de 1.171 \(\text{m}^3\) qui sera effectivement dans le godet à chaque cycle.
Points de vigilance (les erreurs à éviter)
Ne jamais utiliser la capacité en dôme directement pour les calculs de rendement sans l'ajuster avec le coefficient de remplissage. Cela conduirait à une surestimation systématique de la production de la pelle.
Points à retenir (permettre a l'apprenant de maitriser la question)
- La capacité opérationnelle est le volume réel de matériau foisonné transporté.
- \(V_{\text{op}} = V_{\text{dôme}} \cdot k_{\text{r}}\).
- Le coefficient \(k_{\text{r}}\) ajuste la théorie à la pratique du chantier.
Le saviez-vous ? (la culture de l'ingénieur)
L'efficacité du remplissage dépend énormément de l'habileté de l'opérateur. Un opérateur expérimenté peut atteindre des coefficients de remplissage bien supérieurs à ceux d'un débutant, ce qui a un impact direct sur la productivité horaire de la machine.
FAQ (pour lever les doutes)
Résultat Final (la conclusion chiffrée)
A vous de jouer(pour verifier la comprehension de l'etudiant parrapport a la question)
Si le matériau était du sable sec (\(k_{\text{r}} = 1.05\)), quelle serait la capacité opérationnelle en litres ?
Question 4 : Calculer le volume en place extrait
Principe (le concept physique)
C'est le calcul final, celui qui intéresse le plus le planificateur. Il répond à la question : "Combien de mètres cubes de terrain en place, tel qu'il est sur le plan, est-ce que j'enlève à chaque coup de godet ?". Pour cela, on prend le volume de matériau foisonné qu'on transporte réellement (\(V_{\text{op}}\)) et on le "dé-foisonne" en le divisant par le coefficient de foisonnement (\(k_{\text{f}}\)). On retrouve ainsi le volume qu'occupait ce matériau avant d'être creusé.
Mini-Cours (approfondissement théorique)
Le foisonnement est un phénomène physique lié à la réorganisation des grains de sol. Un sol compact a une faible porosité (peu de vide). L'action mécanique du godet brise la structure du sol, les grains se réarrangent de manière moins dense, et le volume total (solides + vides) augmente. Le coefficient de foisonnement est le rapport entre la densité en place et la densité foisonnée.
Remarque Pédagogique (le conseil du professeur)
C'est le chaînon manquant entre le godet et le métré du projet. Le bureau d'études vous donne un volume de déblai de 10 000 \(\text{m}^3\) "en place". Votre objectif est de savoir combien de cycles de godet il vous faudra pour réaliser ce travail. Ce calcul est donc indispensable.
Normes (la référence réglementaire)
En France, la norme NF P11-300 ("Exécution des terrassements") classifie les sols et fournit des indications sur leur réutilisation, leur compactage et donc implicitement leur foisonnement. Ces données sont essentielles pour l'établissement des métrés et des plans de mouvement de terres.
Formule(s) (l'outil mathématique)
La formule découle de la définition du foisonnement :
Hypothèses (le cadre du calcul)
On suppose que le matériau est homogène et que le coefficient de foisonnement est constant sur toute la zone d'excavation. En réalité, il peut varier légèrement selon la compacité du sol à différents endroits.
Donnée(s) (les chiffres d'entrée)
- Capacité opérationnelle, \(V_{\text{op}} = 1.171 \, \text{m}^3\) (du calcul Q3)
- Coefficient de foisonnement, \(k_{\text{f}} = 1.25\)
Astuces(Pour aller plus vite)
Une erreur courante est d'oublier le foisonnement lors du calcul du nombre de camions. Si vous excavez 100 \(\text{m}^3\) en place avec un foisonnement de 1.25, il vous faudra évacuer 125 \(\text{m}^3\) de déblais. Il faut dimensionner la flotte de camions pour 125 \(\text{m}^3\), pas 100 !
Schéma (Avant les calculs)
Le Phénomène de Foisonnement
Calcul(s) (l'application numérique)
On divise le volume opérationnel par le coefficient de foisonnement :
Schéma (Après les calculs)
Volume en Place vs Volume Opérationnel
Réflexions (l'interprétation du résultat)
À chaque cycle, la pelle déplace un volume de 1171 litres de terre foisonnée, ce qui correspond à l'excavation de 937 litres (0.937 \(\text{m}^3\)) de terrain en place. Si nous devons excaver 10 000 \(\text{m}^3\) de terrain, il faudra donc faire \(10000 / 0.937 \approx 10672\) cycles. Ce chiffre est la base pour calculer la durée totale du terrassement.
Points de vigilance (les erreurs à éviter)
L'erreur la plus grave en planification est de confondre volume foisonné et volume en place. Si on utilise le volume opérationnel (1.171 \(\text{m}^3\)) pour calculer le nombre de cycles, on trouvera 8540 cycles, soit une sous-estimation du travail de près de 20% ! Il faut toujours diviser par le coefficient de foisonnement, jamais multiplier.
Points à retenir (permettre a l'apprenant de maitriser la question)
- Le volume en place est le volume de sol avant excavation.
- \(V_{\text{en place}} = V_{\text{op}} / k_{\text{f}}\).
- C'est la valeur clé pour le suivi des métrés et la planification de chantier.
Le saviez-vous ? (la culture de l'ingénieur)
Il existe aussi un phénomène inverse : le compactage (ou coefficient de tassement). Lorsque l'on met en place des remblais, on cherche à atteindre une densité supérieure à celle du matériau en vrac. Le volume final du remblai compacté sera inférieur au volume de matériau foisonné apporté.
FAQ (pour lever les doutes)
Résultat Final (la conclusion chiffrée)
A vous de jouer(pour verifier la comprehension de l'etudiant parrapport a la question)
Pour de la roche dynamitée (\(k_{\text{f}} = 1.6\)) et avec un \(V_{\text{op}}\) de 800 L (0.8 \(\text{m}^3\)), quel serait le volume en place extrait en \(\text{m}^3\) ?
Outil Interactif : Rendement de Terrassement
Modifiez les paramètres du godet et du sol pour voir leur influence sur le rendement.
Paramètres d'Entrée
Résultats Clés par Cycle
Le Saviez-Vous ?
La plus grande pelle hydraulique du monde, la Caterpillar 6090 FS, a un godet dont la capacité peut atteindre 52 \(\text{m}^3\) (52 000 litres). En un seul cycle, elle peut remplir un grand camion-benne. Son poids en ordre de marche avoisine les 1000 tonnes, soit le poids de près de 6 Boeings 747.
Foire Aux Questions (FAQ)
Comment choisir le bon coefficient de foisonnement ?
Le coefficient de foisonnement dépend de la nature géologique du sol. Il est déterminé par des essais en laboratoire géotechnique ou estimé à partir de tables standards. Par exemple, pour du sable, il est faible (1.10-1.15), pour de l'argile compacte il est moyen (1.25-1.30), et pour de la roche, il peut être très élevé (1.50-1.80).
Est-ce que le rendement diminue avec la profondeur de creusement ?
Oui, généralement. Plus la fouille est profonde, plus le temps de cycle de la pelle augmente (temps pour remonter le bras, pivoter et vider). Cela diminue le nombre de cycles par heure et donc la production globale, même si la capacité du godet reste la même.
Quiz Final : Testez vos connaissances
1. Si le coefficient de foisonnement d'un sol est élevé (ex: 1.5), cela signifie que...
2. Pour augmenter le volume de matériau EN PLACE extrait par heure, la meilleure stratégie est de...
- Capacité Opérationnelle
- Volume réel de matériau foisonné (en vrac) transporté par le godet à chaque cycle. C'est la capacité en dôme affectée par le coefficient de remplissage.
- Foisonnement
- Augmentation du volume d'un matériau lorsqu'il est extrait de son état naturel (en place) et mis en tas (foisonné ou en vrac). C'est un facteur clé pour la gestion des déblais et remblais.
- Volume en Place
- Volume d'un matériau tel qu'il se trouve dans le sol, avant toute excavation. C'est l'unité de mesure utilisée pour les métrés des projets de terrassement.
D’autres exercices de terrassement:
0 commentaires