Calcul de la force de précontrainte

Calcul de la force de précontrainte

Comprendre le Calcul de la force de précontrainte

Un pont en béton précontraint doit être conçu pour supporter des charges de trafic importantes. L’objectif principal de cet exercice est de calculer la force de précontrainte requise pour que le tablier du pont résiste aux charges sans subir de fissures ni de déformations inacceptables.

Comprendre le Calcul des charges de trafic et le calcul d’une Poutre en Béton Précontraint

Données:

  • Longueur du tablier du pont: \(L = 50\,m\)
  • Largeur du tablier du pont: \(w = 10\,m\)
  • Épaisseur du tablier du pont: \(t = 0.25\,m\)
  • Densité du béton: \(\rho = 2500\,kg/m^3\)
  • Contrainte admissible du béton: \(\sigma_{adm} = 10\,MPa\)
  • Module d’élasticité du béton: \(E_b = 30\,GPa\)
  • Coefficient de sécurité: \(\gamma = 1.5\)
  • Charges dues au trafic (réparties uniformément): \(q = 10\,kN/m^2\)
Calcul de la force de précontrainte

Question:

1. Calcul de la charge permanente: Calculez la charge permanente agissant sur le tablier due au poids propre du béton.

2. Calcul de la charge totale: Déterminez la charge totale sur le tablier en ajoutant les charges dues au trafic à la charge permanente.

3. Calcul de la contrainte initiale: Calculez la contrainte initiale dans le béton due à la précontrainte nécessaire pour que la contrainte totale dans le béton sous charge totale ne dépasse pas la contrainte admissible.

4. Calcul de la force de précontrainte: Déterminez la force de précontrainte nécessaire en utilisant les contraintes initiales calculées et en tenant compte du coefficient de sécurité.

Correction : Calcul de la force de précontrainte

1. Calcul de la charge permanente

Formule générale:

\[ Q_{\text{perm}} = \rho \times V \]

où:

  • \(\rho\) est la densité du béton (\(2500 \, \text{kg/m}^3\))
  • \(V\) est le volume du béton

Calcul du volume:

\[ V = L \times w \times t \] \[ V = 50 \, \text{m} \times 10 \, \text{m} \times 0.25 \, \text{m} \] \[ V = 125 \, \text{m}^3 \]

Substitution dans la formule:

\[ Q_{\text{perm}} = 2500 \, \text{kg/m}^3 \times 125 \, \text{m}^3 \] \[ Q_{\text{perm}} = 312500 \, \text{kg} \]

Conversion en Newtons (en utilisant \(g = 9.81 \, \text{m/s}^2\)):

\[ Q_{\text{perm}} = 312500 \, \text{kg} \times 9.81 \, \text{m/s}^2 \] \[ Q_{\text{perm}} = 3065625 \, \text{N} \]

2. Calcul de la charge totale

Charge due au trafic:

\[ Q_{\text{trafic}} = q \times A \]

où:

  • \(q\) est la charge du trafic (\(10 \, \text{kN/m}^2\))
  • \(A\) est l’aire du tablier

\[ A = L \times w \] \[ A = 50 \, \text{m} \times 10 \, \text{m} \] \[ A = 500 \, \text{m}^2 \]

\[ Q_{\text{trafic}} = 10 \, \text{kN/m}^2 \times 500 \, \text{m}^2 \] \[ Q_{\text{trafic}} = 5000 \, \text{kN} \] \[ Q_{\text{trafic}} = 5000000 \, \text{N} \]

Charge totale:

\[ Q_{\text{total}} = Q_{\text{perm}} + Q_{\text{trafic}} \] \[ Q_{\text{total}} = 3065625 \, \text{N} + 5000000 \, \text{N} \] \[ Q_{\text{total}} = 8065625 \, \text{N} \]

3. Calcul de la contrainte initiale nécessaire

Contrainte maximale admissible:

\[ \sigma_{\text{adm}} = 10 \, \text{MPa} = 10 \times 10^6 \, \text{Pa} \]

Aire de la section transversale du tablier:

\[ A = w \times t \] \[ A = 10 \, \text{m} \times 0.25 \, \text{m} \] \[ A = 2.5 \, \text{m}^2 \]

Contrainte totale sous charge:

\[ \sigma = \frac{Q_{\text{total}}}{A} \] \[ \sigma = \frac{8065625 \, \text{N}}{2.5 \, \text{m}^2} \] \[ \sigma = 3226250 \, \text{Pa} \]

Contrainte initiale nécessaire:

\[ \sigma_{\text{init}} = \sigma_{\text{adm}} – \sigma \] \[ \sigma_{\text{init}} = 10 \times 10^6 \, \text{Pa} – 3226250 \, \text{Pa} \] \[ \sigma_{\text{init}} = 6773750 \, \text{Pa} \]

4. Calcul de la force de précontrainte

Correction avec coefficient de sécurité:

\[ \sigma_{\text{init\_corrected}} = \sigma_{\text{init}} \times \gamma \] \[ \sigma_{\text{init\_corrected}} = 6773750 \, \text{Pa} \times 1.5 \] \[ \sigma_{\text{init\_corrected}} = 10160625 \, \text{Pa} \]

Force de précontrainte:

\[ F_p = \sigma_{\text{init\_corrected}} \times A \] \[ F_p = 10160625 \, \text{Pa} \times 2.5 \, \text{m}^2 \] \[ F_p = 25401562.5 \, \text{N} \]

Calcul de la force de précontrainte

D’autres exercices de béton précontraint:

Chers passionnés de génie civil,

Nous nous efforçons constamment d’améliorer la qualité et l’exactitude de nos exercices sur notre site. Si vous remarquez une erreur mathématique, ou si vous avez des retours à partager, n’hésitez pas à nous en informer. Votre aide est précieuse pour perfectionner nos ressources. Merci de contribuer à notre communauté !

Cordialement, EGC – Génie Civil

0 commentaires

Soumettre un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Poinçonnement d’une dalle plate

Poinçonnement d'une dalle plate Comprendre le Poinçonnement d'une dalle plate Vous êtes ingénieur structure dans une entreprise de construction et vous devez concevoir une dalle plate en béton armé pour un nouveau bâtiment de bureaux. La dalle doit supporter une...

Calcul des Zones de Poinçonnement

Calcul des Zones de Poinçonnement Contexte du calcul des zones de poinçonnement : Un bâtiment résidentiel de plusieurs étages est en cours de conception. Pour l'un des poteaux de structure situés au rez-de-chaussée, il est nécessaire de vérifier la résistance au...

Descente de Charges sur un Poteau

Descente de Charges sur un Poteau Comprendre la Descente de Charges sur un Poteau Vous êtes ingénieur(e) en structure au sein d'une équipe chargée de la conception d'un petit bâtiment de bureaux de trois étages en béton armé. Le bâtiment est prévu pour avoir une...

Comportement en flexion d’une poutre

Comportement en Flexion d’une Poutre en Béton Armé Comprendre le comportement en flexion d'une poutre Vous êtes ingénieur en génie civil et vous devez concevoir une poutre en béton armé pour un petit pont routier. La poutre doit supporter une charge uniformément...

Descente des charges

Descente des charges Comprendre la descente des charges Vous êtes ingénieur en structure et vous travaillez sur la conception d'un bâtiment de bureaux de trois étages. La structure principale est en béton armé. Votre tâche est de calculer la descente des charges...

Calcul du Nombre de Poutres pour Plancher

Calcul du Nombre de Poutres pour Plancher Comprendre le Calcul du Nombre de Poutres pour Plancher Vous êtes ingénieur en génie civil et travaillez sur la conception d'un nouveau bâtiment résidentiel. L'une des étapes clés de ce projet est la conception du plancher en...

Analyse d’une Poutre en Béton Précontraint

Analyse d'une Poutre en Béton Précontraint Comprendre l'Analyse d'une Poutre en Béton Précontraint Concevoir une poutre en béton précontraint pour une application spécifique, en utilisant les méthodes de pré-tension et de post-tension, conformément aux Eurocodes. pour...

Calcul des armatures d’une poutre

Calcul des armatures d'une poutre Comprendre le calcul des armatures d'une poutre: Vous êtes ingénieur en structure et devez concevoir les armatures d'une poutre en béton armé pour un petit pont routier. Le pont doit supporter à la fois son propre poids (poids propre)...

Vérifier le non-écrasement des bielles de béton

Vérifier le non-écrasement des bielles de béton Vérifier le non-écrasement des bielles de béton en compression dans la poutre Vous êtes ingénieur en structure et travaillez sur la conception d'un bâtiment à usage commercial de 5 étages. La structure principale est en...

Calcul du coefficient d’équivalence

Calcul du coefficient d'équivalence Comprendre le Calcul du coefficient d'équivalence Vous êtes ingénieur en structure travaillant sur la conception d'un bâtiment en béton armé. Une partie de votre tâche consiste à calculer le coefficient d'équivalence pour garantir...