Déformation Axiale Due à la Température

Déformation Axiale Due à la Température

Comprendre la Déformation Axiale Due à la Température

Un ingénieur civil doit concevoir un pylône de transmission électrique qui traverse une région soumise à des variations de température extrêmes.

Le pylône est constitué d’une série de barres en acier alignées verticalement et horizontalement, exposées à des températures variant de -20°C en hiver à 40°C en été.

L’ingénieur doit calculer la déformation axiale de ces barres pour s’assurer que la structure peut supporter ces changements sans risque de défaillance.

Comprendre le calcul du Cisaillement simple d’un axe et de le Calcul des déformations dans une poutre,cliquez sur les liens

Données de l’exercice:

  • Matériau: Acier
  • Module d’Young (E): 210 GPa (gigapascals)
  • Coefficient de dilatation thermique (\(\alpha\)): \(12 \times 10^{-6} / ^\circ C\)
  • Longueur initiale de la barre (\(L_0\)): 30 m
  • Diamètre de la barre (\(d\)): 5 cm
  • Température initiale (\(T_0\)): 20°C
  • Charge axiale appliquée (\(P\)): 50 kN (kilonewtons)
  • Température finale (\(T_1\)): 40°C
    Déformation Axiale Due à la Température

    Questions:

    1. Calcul de la déformation due à la charge axiale:

    • Déterminer la déformation axiale causée par la charge appliquée

    2. Calcul de la déformation due au changement de température:

    • Calculer la déformation axiale due au changement de température

    3. Déformation totale:

    • Déterminer la déformation totale de la barre en additionnant les déformations dues à la charge et à la dilatation thermique.

    Correction : Déformation Axiale Due à la Température

    Données et formules:

    • Module d’Young (E)}: 210 GPa = \(210 \times 10^9\) Pa
    • Coefficient de dilatation thermique (\(\alpha\)): \(12 \times 10^{-6}\) /°C
    • Longueur initiale de la barre (\(L_0\)): 30 m
    • Diamètre de la barre (d): 5 cm = 0.05 m
    • Température initiale (\(T_0\)): 20°C
    • Charge axiale appliquée (P): 50 kN = \(50 \times 10^3\) N
    • Température finale (\(T_1\)): 40°C

    Calcul de l’aire de la section transversale (A)

    L’aire de la section transversale d’une barre circulaire est donnée par:

    \[ A = \pi \frac{d^2}{4} \] \[ A = \pi \left(\frac{0.05 \, \text{m}}{2}\right)^2 \] \[ A = \pi (0.025 \, \text{m})^2 \] \[ A = 0.001963 \, \text{m}^2 \]

    1. Déformation due à la charge axiale (\(\delta_L\))

    \[ \delta_L = \frac{P \cdot L_0}{A \cdot E} \]

    Substituant les valeurs:

    \[ \delta_L = \frac{50 \times 10^3 \, \text{N} \times 30 \, \text{m}}{0.001963 \, \text{m}^2 \times 210 \times 10^9 \, \text{Pa}} \] \[ \delta_L = 0.00364 \, \text{m} \] \[ \delta_L = 3.64 \, \text{mm} \]

    2. Déformation due au changement de température (\(\delta_T\))

    \[ \delta_T = \alpha \cdot (T_1 – T_0) \cdot L_0 \]

    Substituant les valeurs:

    \[ \delta_T = 12 \times 10^{-6} /°C \times (40°C – 20°C) \times 30 \, \text{m} \] \[ \delta_T = 0.0072 \, \text{m} \] \[ \delta_T = 7.2 \, \text{mm} \]

    3. Déformation totale de la barre

    • Déformation totale:

    \[ = \delta_L + \delta_T \] \[ = 3.64 \, \text{mm} + 7.2 \, \text{mm} \] \[ = 10.84 \, \text{mm} \]

    Conclusion

    La barre en acier se déformera d’un total de 10.84 mm sous l’effet combiné de la charge axiale et du changement de température.

    Cela permet à l’ingénieur de comprendre que la structure peut subir des déformations significatives dues à des forces mécaniques et des variations thermiques, et que ces facteurs doivent être pris en compte lors de la conception de structures résistantes et sécuritaires.

    Déformation Axiale Due à la Température

    D’autres exercices de Rdm: 

    Chers passionnés de génie civil,

    Nous nous efforçons constamment d’améliorer la qualité et l’exactitude de nos exercices sur notre site. Si vous remarquez une erreur mathématique, ou si vous avez des retours à partager, n’hésitez pas à nous en informer. Votre aide est précieuse pour perfectionner nos ressources. Merci de contribuer à notre communauté !

    Cordialement, EGC – Génie Civil

    0 commentaires

    Soumettre un commentaire

    Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

    Cercle de Mohr : Exercice – Corrigé

    Cercle de Mohr : Exercice - Corrigé Contexte de calcul Une poutre est soumise à des contraintes plane. À un certain point de cette poutre, les contraintes normales sur les faces horizontales et verticales sont \( \sigma_x = 8 \text{ MPa} \) et \( \sigma_y = 4 \text{...

    Réactions d’Appui et Efforts Internes

    Réactions d'Appui et Efforts Internes Comprendre les Réactions d'Appui et Efforts Internes Considérons une poutre encastrée-libre d'une longueur L = 6 m. La poutre est soumise à une charge uniformément répartie q = 2 kN/m sur toute sa longueur, ainsi qu'à une charge...

    Calculer la variation de longueur des poutres

    Calculer la variation de longueur des poutres Comprendre comment Calculer la variation de longueur des poutres Considérons une passerelle métallique utilisée pour le passage piétonnier au-dessus d'une voie ferrée. La passerelle est soutenue par deux poutres en acier...

    Charge Critique de Flambement

    Charge Critique de Flambement Comprendre la Charge Critique de Flambement Dans une entreprise de construction, un ingénieur doit concevoir une colonne verticale légère qui supportera une charge axiale. La colonne est en acier avec un module d'élasticité E de 200 GPa....

    Torsion dans une Poutre en T

    Torsion dans une Poutre en T Comprendre la Torsion dans une Poutre en T Vous êtes un ingénieur en structure chargé de concevoir un élément de support en forme de T pour une installation industrielle. Cette poutre en T sera soumise à un moment de torsion dû aux...

    Méthode des Nœuds pour un Treillis

    Méthode des Nœuds pour un Treillis Comprendre la Méthode des Nœuds pour un Treillis Considérons un treillis plan en forme de triangle, composé de trois nœuds et trois éléments (barres). Le treillis est fixé au sol à l'un de ses nœuds (nœud A) et est supporté par un...

    Calcul de la torsion d’un poteau

    Calcul de la torsion d'un poteau Comprendre le Calcul de la torsion d'un poteau Un ingénieur en génie civil doit concevoir un poteau de soutien pour un pont. Ce poteau doit être capable de résister à des moments de torsion générés par les forces du vent et les charges...

    Théorie de la plasticité

    Théorie de la plasticité Comprendre la Théorie de la plasticité Vous êtes ingénieur en génie civil et vous travaillez sur la conception d'une poutre en acier qui doit supporter une charge répartie. La poutre est en acier structural avec un comportement élastoplastique...

    Calcul de l’Énergie de Déformation

    Calcul de l'Énergie de Déformation Comprendre le Calcul de l'Énergie de Déformation Un ingénieur est chargé de concevoir un support en acier pour une machine dans une usine. Le support est modélisé comme une poutre encastrée-libre (c'est-à-dire fixée à une extrémité...

    Déplacement de l’Extrémité Libre

    Déplacement de l'Extrémité Libre Comprendre le déplacement de l'Extrémité Libre Considérons une poutre encastrée-libre, c'est-à-dire une poutre avec une extrémité encastrée et l'autre extrémité libre. Cette poutre est soumise à une charge uniformément répartie et à...