Contraintes de Sol par le Cercle de Mohr

Contraintes de Sol par le Cercle de Mohr

Comprendre les Contraintes de Sol par le Cercle de Mohr

Vous êtes un ingénieur géotechnique chargé d’analyser les contraintes dans un échantillon de sol prélevé sur un site de construction prévu pour un immeuble de bureaux.

L’échantillon de sol est soumis à un test triaxial pour déterminer ses propriétés mécaniques, notamment sa résistance au cisaillement. Les résultats du test vous fournissent les contraintes principales appliquées sur l’échantillon.

Votre tâche est de déterminer les contraintes normales et de cisaillement maximales agissant sur l’échantillon de sol à l’aide du cercle de Mohr.

Pour comprendre le calcul de la Résistance au Cisaillement d’un Sol, cliquez sur le lien.

Données:

  • Contrainte principale majeure (\(\sigma_1\)): 150 kPa
  • Contrainte principale mineure (\(\sigma_3\)): 50 kPa
  • Orientation de l’échantillon: La contrainte principale majeure est verticale.

Questions:

1. Dessiner le cercle de Mohr pour l’échantillon de sol.
2. Calculer la contrainte normale maximale (\(\sigma_{\text{max}}\)).
3. Calculer la contrainte de cisaillement maximale (\(\tau_{\text{max}}\)).
4. Déterminer l’orientation des plans sur lesquels ces contraintes maximales agissent.

Correction : Contraintes de Sol par le Cercle de Mohr

1. Cercle de Mohr pour l’échantillon de sol.

A. Calcul du centre et du rayon du cercle de Mohr

Pour un élément de sol soumis à des contraintes principales \(\sigma_1\) (majeure) et \(\sigma_3\) (mineure), le cercle de Mohr permet de déterminer graphiquement les contraintes agissant sur des plans inclinés par rapport aux axes principaux.

Centre \(C\) du cercle

Le centre du cercle est situé à une contrainte normale moyenne entre les deux contraintes principales.

Il est calculé comme la moyenne de \(\sigma_1\) et \(\sigma_3\).

\[ C = \frac{\sigma_1 + \sigma_3}{2} \] \[
C = \frac{150 + 50}{2} \] \[ C = 100 \, \text{kPa} \]

Rayon \(R\) du cercle

Le rayon du cercle correspond à la moitié de la différence entre les contraintes principales, représentant la variation maximale de la contrainte de cisaillement.

\[ R = \frac{\sigma_1 – \sigma_3}{2} \] \[
R = \frac{150 – 50}{2} \] \[ R = 50 \, \text{kPa} \]

Cercle de Mohr

2. Calcul de la contrainte normale maximale \(\sigma_{max}\)

La contrainte normale maximale agissant sur l’échantillon est trouvée en ajoutant le rayon du cercle au centre.

\[ \sigma_{max} = C + R \]

Cela donne

\[ \sigma_{max} = 100 + 50 \] \[ \sigma_{max} = 150 \, \text{kPa} \]

qui est égale à la contrainte principale majeure \(\sigma_1\), comme attendu pour cet état de contrainte.

3. Calcul de la contrainte de cisaillement maximale \(\tau_{max}\)

La contrainte de cisaillement maximale est égale au rayon du cercle de Mohr, car c’est la valeur maximale que la contrainte de cisaillement peut atteindre pour n’importe quelle orientation du plan de coupe dans l’échantillon.

\[ \tau_{max} = R = 50 \, \text{kPa} \]

4. Détermination de l’orientation des plans

Les contraintes maximales (normale et de cisaillement) agissent sur des plans orientés à 45° par rapport aux directions des contraintes principales.

Cela est dû à la géométrie du cercle de Mohr, où un déplacement angulaire de \(2\theta\) sur le cercle correspond à une rotation physique de \(\theta\) dans l’échantillon de sol.

Résumé de la Correction

Le centre du cercle de Mohr (\(C\)) se trouve à 100 kPa, et son rayon (\(R\)) est de 50 kPa. La contrainte normale maximale (\(\sigma_{max}\)) est de 150 kPa, correspondant à la contrainte principale majeure.

La contrainte de cisaillement maximale (\(\tau_{max}\)) est de 50 kPa et se produit sur des plans inclinés à 45° par rapport aux axes principaux de contrainte.

Contraintes de Sol par le Cercle de Mohr

D’autres exercices de géotechnique:

Chers passionnés de génie civil,

Nous nous efforçons constamment d’améliorer la qualité et l’exactitude de nos exercices sur notre site. Si vous remarquez une erreur mathématique, ou si vous avez des retours à partager, n’hésitez pas à nous en informer. Votre aide est précieuse pour perfectionner nos ressources. Merci de contribuer à notre communauté !

Cordialement, EGC – Génie Civil

0 commentaires

Soumettre un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Calcul de la contrainte ultime sur une semelle

Calcul de la contrainte ultime sur une semelle Comprendre le Calcul de la contrainte ultime sur une semelle Dans le cadre d'un projet de construction d'un bâtiment résidentiel, il est nécessaire de concevoir les fondations qui supporteront les charges de la structure....

Calcul l’indice des vides final

Calcul l'indice des vides final Comprendre le calcul l'indice des vides final Vous travaillez sur un projet de construction d'une route dans une région à sol argileux. Avant de commencer la construction, il est essentiel de comprendre les propriétés du sol, notamment...

Résistance au Cisaillement d’un Sol

Résistance au Cisaillement d'un Sol Comprendre la Résistance au Cisaillement d'un Sol  Vous êtes un ingénieur en géotechnique chargé d'évaluer la capacité portante d'un terrain pour la construction d'une petite structure. Pour ce faire, vous décidez de réaliser un...

Tassement et Consolidation d’une Fondation

Tassement et Consolidation d'une Fondation Comprendre le Tassement et Consolidation d'une Fondation Vous êtes ingénieur en génie civil et devez analyser le tassement potentiel d'un sol sous une nouvelle construction. La structure prévue est un petit immeuble de...

Calcul de la poussée des terres sur un mur

Calcul de la poussée des terres sur un mur Comprendre le Calcul de la poussée des terres sur un mur Dans un projet de construction urbaine, un mur de soutènement est nécessaire pour supporter les terres d’un terrain en pente, permettant ainsi de créer un espace plat...

Calcul de la force de renversement d’un mur

Calcul de la force de renversement d'un mur Comprendre le Calcul de la force de renversement d'un mur Un ingénieur géotechnique est chargé d'évaluer la stabilité d'un mur de soutènement qui retient un talus de terre. Le mur est soumis à diverses charges et contraintes...

Détermination du Coefficient de Tassement (mv)

Détermination du Coefficient de Tassement (mv) Comprendre la Détermination du Coefficient de Tassement (mv) Vous êtes un ingénieur géotechnique chargé de l'étude des fondations pour un nouveau bâtiment commercial qui sera construit sur un site urbain. Le terrain est...

Consolidation primaire et secondaire du sol

Consolidation primaire et secondaire du sol Comprendre la consolidation primaire et secondaire du sol Vous êtes ingénieur géotechnique pour une entreprise de génie civil, chargé de concevoir les fondations d’un immeuble de grande hauteur dans une zone urbaine...

Contrainte induite dans le sol

Contrainte induite dans le sol Comprendre le calcul de la Contrainte induite dans le sol Une entreprise de construction envisage de construire un immeuble de bureaux. Pour évaluer la capacité portante du sol, elle doit calculer la contrainte induite à une certaine...

Calcul de la masse volumique humide

Calcul de la masse volumique humide Comprendre le Calcul de la masse volumique humide Vous êtes un ingénieur géotechnique travaillant sur un projet de construction d'un grand complexe résidentiel. Avant de débuter la construction, il est crucial d'analyser les...