Études de cas pratique

EGC

Cisaillement simple d’un axe

Cisaillement simple d’un axe

Comprendre le Cisaillement simple d’un axe

Un bureau d’études en génie civil travaille sur la conception d’un nouveau bâtiment. L’une des étapes clés du projet consiste à évaluer la résistance d’un axe en acier utilisé dans la structure de support d’une passerelle piétonne.

Cet axe est soumis à des forces transversales dues au poids des piétons et à l’équipement installé sur la passerelle.

Pour garantir la sécurité et la durabilité de la structure, il est crucial de vérifier que cet axe peut résister aux efforts de cisaillement induits sans subir de déformation plastique.

Pour comprendre la Déformation Axiale Due à la Température, cliquez sur le lien.

Données:

  1. Diamètre de l’axe en acier (d): 30 mm
  2. Longueur de l’axe (L): 2 m
  3. Force transversale appliquée (F): 5 kN (direction perpendiculaire à l’axe de l’élément)
  4. Module de Coulomb de l’acier (G): 81 GPa (information supplémentaire pour des calculs de déformation, si nécessaire)
  5. Coefficient de sécurité (n): 3

Questions:

1. Calcul de la surface de cisaillement (A):

  • Déterminer la surface de l’axe en acier soumise au cisaillement.

2. Calcul de la contrainte de cisaillement (τ) dans l’axe

3. Analyse de la sécurité:

  • Comparer la contrainte de cisaillement obtenue avec la contrainte admissible pour l’acier utilisé, en considérant le coefficient de sécurité.
  • Note: La contrainte de cisaillement maximale pour l’acier est typiquement autour de 260 à 300 MPa

4. Conclusion: Sur la base des résultats obtenus, conclure si l’axe en acier est apte à résister aux efforts de cisaillement sans défaillance.

Correction : Cisaillement simple d’un axe

1. Calcul de la surface de cisaillement (A)

La surface de cisaillement correspond à la section transversale de l’axe. Pour un axe circulaire, la surface A est donnée par la formule de l’aire d’un cercle:

\[ A = \frac{\pi d^2}{4} \]

  • d est le diamètre de l’axe.

Pour \(d = 30 \, \text{mm}\), nous avons:

\[ A = \frac{\pi \times (0.03)^2}{4} \] \[ A = \frac{0.0009 \times \pi}{4} \, \text{m}^2 \] \[ A \approx 7.06858 \times 10^{-4} \, \text{m}^2 \]

2. Calcul de la contrainte de cisaillement (\(\tau\))

La contrainte de cisaillement \(\tau\) est calculée en divisant la force transversale F par la surface de cisaillement A:

\[ \tau = \frac{F}{A} \]

La force F doit être en Newtons pour la cohérence des unités, donc \(F = 5000 \, \text{N}\) (puisque 1 kN = 1000 N), et \( A \approx 7.06858 \times 10^{-4} \, \text{m}^2 \)

\[ \tau = \frac{5000}{7.06858 \times 10^{-4}} \] \[ \tau \approx 7071067.82 \, \text{Pa} \] \[ \tau = 70.71 \, \text{MPa} \]

3. Analyse de la sécurité

La contrainte de cisaillement admissible \(\tau_{\text{adm}}\) peut être estimée à partir de la contrainte de cisaillement maximale pour l’acier, divisée par le coefficient de sécurité.

Supposons que la contrainte de cisaillement maximale pour l’acier soit de 260 MPa. Ainsi:

\[ \tau_{\text{adm}} = \frac{260}{n} \]

Pour un coefficient de sécurité n = 3, nous avons:

\[ \tau_{\text{adm}} = \frac{260}{3} \approx 86.67 \, \text{MPa} \]

4. Conclusion

La contrainte de cisaillement calculée dans l’axe, \(\tau = 70.71 \, \text{MPa}\), est inférieure à la contrainte admissible, \(\tau_{\text{adm}} = 86.67 \, \text{MPa}\), ce qui indique que l’axe en acier possède une marge de sécurité suffisante pour résister aux efforts de cisaillement induits par la charge transversale sans subir de déformation plastique ou de défaillance.

Cette marge de sécurité garantit que l’axe en acier peut supporter le poids des piétons et de l’équipement installé sur la passerelle piétonne, conformément aux exigences du projet.

Cisaillement simple d’un axe

D’autres exercices de Rdm:

Articles Connexes

0 commentaires

Soumettre un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *