Études de cas pratique

EGC

Calcul du Module de Young du Titane

Calcul du Module de Young du Titane

Comprendre le Calcul du Module de Young du Titane

Lors d’expériences de traction en laboratoire, qui permettent de caractériser les propriétés mécaniques des matériaux, des barres en aluminium et en titane sont testées.

Ces essais consistent à appliquer une force axiale sur une éprouvette jusqu’à ce qu’une déformation élastique soit observée.

L’objectif est de comparer la réponse élastique de deux matériaux différents sous une même charge pour en déduire des propriétés mécaniques.

Pour comprendre la Détermination du Module d’Young, cliquez sur le lien.

Données:

  • Essai nº1 : Barre en alliage d’aluminium
    • Module d’Young de l’aluminium (): 70 GPa
    • Longueur de la barre : 324 mm
    • Section carrée : 6 mm de côté
    • Allongement observé sous charge : 1.8 mm
  • Essai nº2 : Barre en titane
    • Longueur de la barre : 308 mm
    • Section rectangulaire : 4 mm × 7 mm
    • Allongement observé sous charge : 1.4 mm

Questions:

  1. Quelle est la déformation subie par la barre en aluminium?
  2. Quelle est la déformation subie par la barre en titane?
  3. Sachant que la même force de traction est appliquée aux deux barres et que le module d’Young de l’aluminium est connu, comment calculer le module d’Young du titane à partir de ces données?

Correction : Calcul du Module de Young du Titane

1. Calcul de la Déformation de la Barre en Aluminium

  • Longueur initiale (\(L_{0_{\text{Al}}}\)): 324 mm
  • Allongement (\(\Delta L_{\text{Al}}\)): 1.8 mm

La déformation (\(\varepsilon_{\text{Al}}\)) est calculée comme suit:

\[ \varepsilon_{\text{Al}} = \frac{\Delta L_{\text{Al}}}{L_{0_{\text{Al}}}} \] \[ \varepsilon_{\text{Al}} = \frac{1.8\, \text{mm}}{324\, \text{mm}} \]

La deformation de la barre en Aluminium est d’environ 0.005556 

2. Calcul de la Déformation de la Barre en Titane

  • Longueur initiale LTi: 308 mm
  • Allongement (\(\Delta L_{\text{Ti}}\)): 1.4 mm

La déformation (\(\varepsilon_{\text{Ti}}\)) est calculée comme suit:

\[ \varepsilon_{\text{Ti}} = \frac{\Delta L_{\text{Ti}}}{L_{0_{\text{Ti}}}} \] \[ \varepsilon_{\text{Ti}} = \frac{1.4\, \text{mm}}{308\, \text{mm}} \]

La deformation de la barre en Titane est d’environ 0.004545

3. Calcul du Module de Young du Titane

Nous avons le module de Young de l’aluminium (\(E_{\text{Al}}\)) et nous supposons que la même force est appliquée aux deux barres, donc la contrainte (\(\sigma\)) est la même pour les deux. D’après la loi de Hooke :

\[\sigma = E \cdot \varepsilon\]

Pour l’aluminium, nous avons :

\[E_{\text{Al}} \cdot \varepsilon_{\text{Al}} = \sigma\]

Pour le titane, avec la même contrainte, nous avons :

\[E_{\text{Ti}} \cdot \varepsilon_{\text{Ti}} = \sigma\]

Comme la contrainte est la même pour les deux matériaux, nous pouvons établir l’équation :

\[E_{\text{Al}} \cdot \varepsilon_{\text{Al}} = E_{\text{Ti}} \cdot \varepsilon_{\text{Ti}}\]

En isolant \(E_{\text{Ti}}\), nous obtenons :

\[E_{\text{Ti}} = \frac{E_{\text{Al}} \cdot \varepsilon_{\text{Al}}}{\varepsilon_{\text{Ti}}}\]

Nous remplaçons par les valeurs numériques et calculons le résultat :

\[E_{\text{Ti}} = \frac{70 \times 10^9 \, \text{Pa} \cdot \frac{1.8}{324}}{\frac{1.4}{308}}\]

Résultats:

En effectuant les calculs, nous trouvons que le module de Young du titane (\(E_{\text{Ti}}\)) est d’environ 85.56 GPa.

Conclusion:

Le module de Young du titane, basé sur les essais de traction menés et la comparaison avec les propriétés connues de l’aluminium, est d’environ 85.56 GPa.

Cela indique la rigidité du titane sous une charge élastique dans les conditions de l’essai.

Calcul du Module de Young du Titane

D’autres exercices de Rdm:

Articles Connexes

0 commentaires

Soumettre un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *