Analyse de la Stabilité d’un Pylône

Analyse de la Stabilité d’un Pylône

Comprendre l’Analyse de la Stabilité d’un Pylône

Un ingénieur structure doit concevoir un pylône de transmission électrique en acier. La conception doit assurer que le pylône peut résister aux charges dues au vent et au poids des câbles électriques sans flamber.

L’ingénieur doit calculer la résistance au flambement latéral de la section transversale du pylône pour s’assurer que la structure est suffisamment solide.

Pour comprendre la Vérification de l’équilibre des forces verticales, cliquez sur le lien.

Données de l’Exercice:

  • Matériau: Acier, avec un module d’élasticité E = 210 GPa et un module de cisaillement G = 80 GPa.
  • Section transversale du pylône: Forme circulaire, diamètre extérieur D = 300 mm, épaisseur de la paroi t = 10 mm.
  • Hauteur du pylône: L = 10 m.
  • Charge critique de flambement latéral: À déterminer.

Questions:

1. Calculer le moment d’inertie de la section transversale I et le rayon de giration r.

2. Déterminer la charge critique de flambement latéral \(P_{\text{cr}}\) en utilisant la formule d’Euler pour le flambement, en considérant les conditions de fixation aux extrémités comme étant encastrées-libres.

3. Évaluer si le pylône peut résister à une charge de vent latéral estimée à \(F_{\text{vent}} = 15\, \text{kN}\) sans risque de flambement.

Correction : Analyse de la Stabilité d’un Pylône

1. Calcul du Moment d’Inertie et du Rayon de Giration

Moment d’inertie (I) de la section transversale:

Le moment d’inertie est une mesure de la résistance d’une section à la flexion et au flambement. Pour une section circulaire creuse, il est donné par la formule:

\[ I = \frac{\pi}{64} \left(D^4 – (D – 2t)^4\right) \]

En substituant les valeurs données:

  • D = 0.3 m (diamètre extérieur)
  • t = 0.01 m (épaisseur de la paroi)

\[ I = \frac{\pi}{64} \left(0.3^4 – (0.3 – 2 \times 0.01)^4\right) \] \[ I = 9.59 \times 10^{-5} \, \text{m}^4 \]

Cela signifie que le moment d’inertie de la section est de \(9.59 \times 10^{-5} \, \text{m}^4\), indiquant comment la masse est distribuée dans la section transversale par rapport à son axe neutre.

Rayon de giration (r):

Le rayon de giration indique une distribution effective du matériau autour de l’axe et est crucial pour évaluer la tendance au flambement.

Il est calculé comme suit:

\[ r = \sqrt{\frac{I}{A}} \]

Avec A étant l’aire de la section transversale, calculée par:

\[ A = \frac{\pi}{4} \left(D^2 – (D – 2t)^2\right) \] \[ A = \frac{\pi}{4} \left(0.3^2 – (0.3 – 2 \times 0.01)^2\right) \] d’où:  \[ A = 0.0091 \, \text{m}^2 \]

Ensuite, le rayon de giration est:

\[ r = \sqrt{\frac{9.59 \times 10^{-5}}{0.0091}} \] ce qui donne: \[ r = 0.1026 \, \text{m} \]

Ce qui reflète la compacité de la section en termes de sa résistance au flambement.

2. Calcul de la Charge Critique de Flambement Latéral

La charge critique de flambement (\(P_{\text{cr}}\)) est la charge maximale que la colonne peut supporter avant de flamber. Elle est calculée à l’aide de la formule d’Euler pour le flambement, adaptée pour une colonne encastrée-libre:

\[ P_{\text{cr}} = \frac{\pi^2 E I}{(K L)^2} \]

où E est le module d’élasticité de l’acier (\(210 \, \text{GPa}\)), K le facteur de longueur effective (2 pour encastrée-libre), et L la hauteur du pylône (\(10 \, \text{m}\)).

Ainsi, la charge critique de flambement est:

\[ = \frac{\pi^2 \times 210 \times 10^9 \times 9.59 \times 10^{-5}}{(2 \times 10)^2} \] ce qui donne: \[ P_{cr} = 496,854 \, \text{N} \]

Cette valeur représente la capacité de charge maximale avant le flambement, offrant un critère pour évaluer la sécurité de la structure.

3. Évaluation de la Résistance au Flambement

En comparant la charge critique de flambement (\(P_{\text{cr}} = 496,854 \, \text{N}\)) à la charge de vent latéral (\(F_{\text{vent}} = 15,000 \, \text{N}\)), nous constatons que \(P_{\text{cr}}\) est largement supérieure à \(F_{\text{vent}}\).

Cela signifie que le pylône est suffisamment robuste pour résister au vent latéral sans risquer de flamber.

Conclusion:

L’analyse montre que le pylône de transmission électrique est conçu pour être stable et sûr sous l’effet des charges latérales dues au vent, avec une marge de sécurité significative contre le flambement.

Analyse de la Stabilité d’un Pylône

D’autres exercices de Rdm:

Chers passionnés de génie civil,

Nous nous efforçons constamment d’améliorer la qualité et l’exactitude de nos exercices sur notre site. Si vous remarquez une erreur mathématique, ou si vous avez des retours à partager, n’hésitez pas à nous en informer. Votre aide est précieuse pour perfectionner nos ressources. Merci de contribuer à notre communauté !

Cordialement, EGC – Génie Civil

0 commentaires

Soumettre un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Déformation de Différentes Sections Transversales

Déformation de Différentes Sections Transversales Comprendre la Déformation de Différentes Sections Transversales Un projet de construction d'un petit pont piétonnier en milieu urbain. Ce pont doit supporter à la fois son propre poids et la charge des piétons. Nous...

Propriétés mécaniques des matériaux

Propriétés Mécaniques des Matériaux Contexte sur les propriétés mécaniques des matériaux Vous êtes un ingénieur travaillant sur la conception d'une poutre pour un petit pont. La poutre est faite d'un acier standard, et elle doit supporter une charge uniformément...

Cercle de Mohr : Exercice – Corrigé

Cercle de Mohr : Exercice - Corrigé Contexte de calcul Une poutre est soumise à des contraintes plane. À un certain point de cette poutre, les contraintes normales sur les faces horizontales et verticales sont \( \sigma_x = 8 \text{ MPa} \) et \( \sigma_y = 4 \text{...

Réactions d’Appui et Efforts Internes

Réactions d'Appui et Efforts Internes Comprendre les Réactions d'Appui et Efforts Internes Considérons une poutre encastrée-libre d'une longueur L = 6 m. La poutre est soumise à une charge uniformément répartie q = 2 kN/m sur toute sa longueur, ainsi qu'à une charge...

Calculer la variation de longueur des poutres

Calculer la variation de longueur des poutres Comprendre comment Calculer la variation de longueur des poutres Considérons une passerelle métallique utilisée pour le passage piétonnier au-dessus d'une voie ferrée. La passerelle est soutenue par deux poutres en acier...

Charge Critique de Flambement

Charge Critique de Flambement Comprendre la Charge Critique de Flambement Dans une entreprise de construction, un ingénieur doit concevoir une colonne verticale légère qui supportera une charge axiale. La colonne est en acier avec un module d'élasticité E de 200 GPa....

Torsion dans une Poutre en T

Torsion dans une Poutre en T Comprendre la Torsion dans une Poutre en T Vous êtes un ingénieur en structure chargé de concevoir un élément de support en forme de T pour une installation industrielle. Cette poutre en T sera soumise à un moment de torsion dû aux...

Méthode des Nœuds pour un Treillis

Méthode des Nœuds pour un Treillis Comprendre la Méthode des Nœuds pour un Treillis Considérons un treillis plan en forme de triangle, composé de trois nœuds et trois éléments (barres). Le treillis est fixé au sol à l'un de ses nœuds (nœud A) et est supporté par un...

Calcul de la torsion d’un poteau

Calcul de la torsion d'un poteau Comprendre le Calcul de la torsion d'un poteau Un ingénieur en génie civil doit concevoir un poteau de soutien pour un pont. Ce poteau doit être capable de résister à des moments de torsion générés par les forces du vent et les charges...

Théorie de la plasticité

Théorie de la plasticité Comprendre la Théorie de la plasticité Vous êtes ingénieur en génie civil et vous travaillez sur la conception d'une poutre en acier qui doit supporter une charge répartie. La poutre est en acier structural avec un comportement élastoplastique...